
Recap cross-sections

(table 5.1) Nou, cross-sections 5 3 cares 2) bound et more comptex 1) a) thomson $\sigma = \sigma_{T} = 6.65 \cdot 10^{-25} \text{ cm}^{2}$ b) Composer (phononenergy higher than vest means every of e Green V-vas carego of e Green V-vas photons Guerronn Querronn Svelatovistrie effects

decreese in J with maneasing Ampon Dess officient Scattering when VT

2) Scattering from bound e a) Oscillater model V >> Vo a normal v of oscillator V >> Vo por vesponds as if free valiation field $\sigma_s = \sigma_T$ 5) V~Vo (chassal) - vesonance Scattering V ~ V. (guantum) also gives a polorizedsignal Os & \$ (v) Loventz profile fire D.2 Some probability photon ented at diffent V

 $\gamma \vee \langle \langle \vee_{6} \rangle \rangle \rangle \rangle$ 2.5e-09 n 20 = 2-01 20-09 recall deBroglie model (partvele size) x>>>20 some as >>r (ree og D. Fo Rayleigh scattering and disausion 0s × 1/24 N, O2 size ~03mm 5e-10 Nyellow = 550mm N>V 2e+09 -10+09 2e+090 1e+09 v-V; (Hz) **Figure D.2.** The Lorentz profile, $\Phi_{\mathcal{L}}(\nu)$, plotted as a function of $(\nu - \nu_{i,j})$ for the Ly α line, using The scatter, more the classical damping constant of Eq. (D.5). voght shy also the (fig 5.8) 3) dust appendix D.3

CH5 THE INTERACTION OF LIGHT WITH MATTER

Table 5.1. Sample photon interaction cross-sections^a

Type	Description	Wavelength or energy	Cross-section (cm ²)
States and	Thomson scattering	≪ 0.51 MeV	6.65×10^{-25}
$\sigma_{T^{\circ}}$ $\sigma_{K-N^{\circ}}$	Compton scattering	0.51 MeV	2.86×10^{-25}
	Compton Same B	5.1 MeV	8.16×10^{-26}
$\sigma_{\mathbf{R}^d}$	Rayleigh scattering (N ₂)	532 nm	5.10×10^{-27}
	(CO)	532 nm	6.19×10^{-27}
	(CO ₂)	532 nm	12.4×10^{-27}
	(CH ₄)	532 mm	12.47×10^{-27}
α _{b b} e	Ly α (natural) ^f	121.567 nm	7.1×10^{-11}
	Ly a (10 ⁺ K) ^s	121.567 nm	5.0×10^{-10}
σ _{HI→HΠ^b}	H ionization	13.6 eV	6.3×10^{-13}
σ _{f−f}	free-free absorption	21 cm	2.8×10^{-2}

"Cross-sections apply to a single scattering event from a single particle.

^bThomson cross-section (Eq. D.2).

'Klein-Nishina cross-section for Compton scattering (see Figure D.4).

^dRayleigh scattering cross-section for a temperature of 15°C and pressure of 101 325 Pa (Ref. [157]).

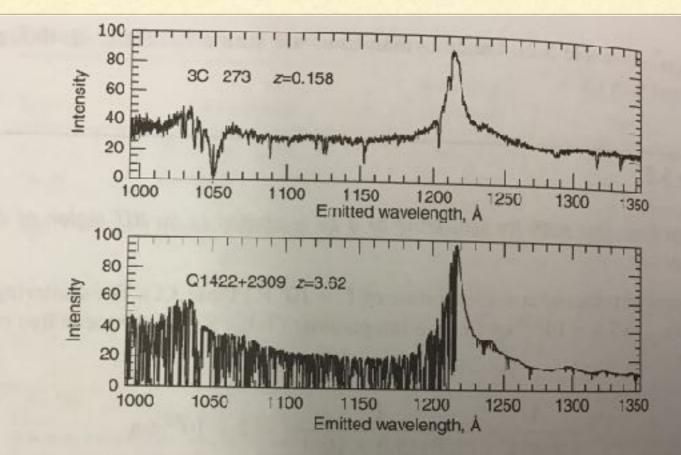
"Resonance, bound-bound scattering from the line centre.

⁷From the natural line shape using Eq. (D.12) with data from Table C.1. Note that only the permitted transitions have been included (see notes to Table C.1).

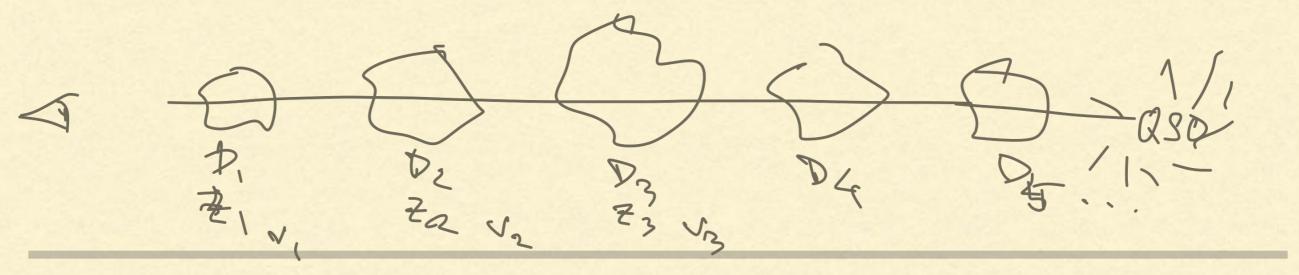
⁸As in the previous row but assuming that the line is Doppler broadened (see Sect. 9.3) at the temperature indicated (Ref. [144]).

^hPhotoionization cross-section from the ground state (Eq. C.9).

'Free-free absorption cross-section for the conditions: $n_e = 0.1 \text{ cm}^{-3}$ and $T = 10^4 \text{ K}$. The cross-section will vary with these quantities and also decreases with increasing frequency (Ref. [160]).


(K 6-2) Find & for Lyd
Ex 6.2) Find & for Lyd photon in HE regn
$n = 100/w^{3}$
$T_{HII} = 10^4 K $ (Table 3.1)
$0 = 5_{5} = 5.10^{-14} cm^2$
- resonance boud-bound Scattering
- Scatterry
$l = \frac{1}{n\sigma_{46}} = 2.10^{"} \text{ cm} < 3 \times R_{0}$
cf to size of HIT topically
hundreds of Pc
~ JASAS

-


tol

Remaine

ich ste

Figure 5.6. Spectra of the quasars, 3C273 (top) and Q1422+2309 (bottom). The quasar, 3C213 is relatively nearby at a redshift of z = 0.158 (see Sect. 7.2.2 for a discussion of the expansion redshift) whereas Q1422+2309 is much farther away. The spectra have been aligned so that the α line emitted from the quasars, themselves, is shown at its rest wavelength. In between us and the more distant quasar, Q1422+2309, there are many HI clouds at a variety of distances, creating the many absorption lines seen to the left of the quasar emission. This is called the *Lyman alpha foret* Most intergalactic gas is, however, ionized. (Reproduced by permission of William (eel)

ABSORPTION

photon losses all its energy (incl heating) & sontion lievetic energy gain free-free absorption Anange of state transition phetoionization -)e- Photom Je- Je- Photom 5 e - different × V,T, y V common (earle different different ionization energy) The owner edges of galaxies , negions around AGN, HI regions white weck an gel radiation field AGN councillas

 $N_r = V_{tot} - V = n_e n_p v_\sigma V = n_e n_p \alpha_r \cdot V = [n_p = n_e]$ γ fystaltosal recombination Coefficient $= n_e^2 \propto \frac{4}{3} \pi R_s^3 = N;$ reonneuge: $R_s n_e^{2/3} = \left(\frac{3}{4\pi} \frac{N_i}{z_r}\right)^3$ eq 5.3 info abt exciting star info about HIT region $\angle 115 = 22$ $\mathcal{U} = R_{s} n_{e}^{2/3} = excitation parameter \left[\frac{pc}{an^{2}} \right]$ $cgp \left[\frac{an}{an^{2}} \right]$

Now we need N; can get from
$$\frac{L_i}{h_V}$$
 [onizing luminosity
N; = $\frac{L_i}{h_V}$ = $\begin{bmatrix} 1.16 \ L = 4\pi R_0^2 F \\ 1.14 \ F = \pi I \\ 4.1 \ Planke B_V = I \end{bmatrix}$
= $4\pi^2 R_A^2 \int_{K_A}^{\infty} \frac{B_V(T)}{h_V} dV$
 $V_i = 37600K$ app G G H_Z
 $V_i = 3,28 \cdot 10^{16} H_Z$ eq C.7
= $N_i = 7,95 \cdot 10^{48} \text{ photoms/s}$