Ex 3.5 Provide an argument shorving that the uiterior of the $G$ is in LTE.
Cowrider deep íterior $\Rightarrow$ gas complately ionized.
\&) checle how for a photen cau travel b-afore reabsorbed $\bar{l}=$ mean free peith
b) congare w the how much T changes (8hould stay the serme for $\angle T E$ - during $l$.
tuidupout = adopts a crossesection for interaction
$\sigma$ Thonson scattering (frea $e^{-}$)
$\sigma_{T}=[0.1 .1]=6.65 \cdot 10^{-5} \mathrm{~cm}^{2}$ anea possented by an $e^{-}$ to an imrouning photon

- mean density $\bar{\rho}_{0}=\frac{M_{B}}{\frac{4}{3} \pi R_{6}{ }^{3}}=1,45 \% / \mathrm{cm}^{3} / \begin{gathered}\text { wedecolont } \\ \text { weip }\end{gathered}$
- number densrity: $n=\bar{\rho}_{0} / \mu \cdot m_{H}=\left[\begin{array}{l}\mu=0.61 \text { for conpletely } \\ \text { ionized gas with }\end{array}\right.$

$$
n=\frac{\bar{\rho}_{0}}{\mu m_{1}}=1.4 \cdot 10^{2 n} / \mathrm{cm}^{3} \quad \text { Lonized ges } w
$$

$$
\begin{equation*}
\frac{0}{\mu m_{H}}=1.4 \cdot 10^{24} / \mathrm{cm}^{3} \tag{3.4.2}
\end{equation*}
$$

${ }^{\text {og } 3.18} \bar{l}=\frac{1}{n \sigma}=\frac{1}{1.4 \cdot 10^{24} / \mathrm{cm}^{3} \cdot 6.65 \cdot 10^{-2 \sigma} \mathrm{~cm}^{2}}=1 \mathrm{~cm}$
b) Tchange in 8 over 1 cm ?
releasied photon neabsorbed w/in $\left.\begin{array}{l}T_{\text {central }}=7.6 \cdot 10^{7} \mathrm{~K} \\ T_{\text {suffure }}=5781 \mathrm{~K}\end{array}\right\}$ tasive 9.3 Sam $T$ to on accurny
$10^{-4} \mathrm{~K}$ of graclient $\frac{\text { Tcereral }-T \text { sinface }}{R_{0}}=\frac{16 \cdot 10^{7}}{6.96 \cdot 10^{10}}=2.3 \cdot 10^{6} \mathrm{k} / \mathrm{cm}$
3.15
$235\}^{25}$ diffusion
"randers watch"
from cone to surface
anergy dips from $\gamma, x$-ray
to UV, optical, $I R$

- depends of type of $\otimes$

Reading recommendation ans C

- The heplogue atom


Figure C.1. Energy level diagram for hydrogen, showing the various series seen in the hydrogen spectrum.

Look at $k=2 \rightarrow 1$ trausition $<L y \alpha$
gu is ionized, or particlly ionized

$$
T=5600 K \quad E=\frac{1}{n\langle v \sigma\rangle} \quad t \operatorname{cu}^{3} \quad t=\frac{1}{1 \cdot 6,0 \cdot 10^{-19}}=5 y r
$$

tasle $3.2 \underbrace{}_{\text {r-H }}$ colrision rate H-1H coefficient
What abt spontancers de-excitation

$$
t=\frac{1}{A_{i j}\left[s^{-1}\right]}=\frac{1}{4 \cdot 7} \cdot 108 / s=2.1 \cdot 10^{-9} s \quad \text { table } c .1
$$

$\uparrow$ Einsteíns $A$-coefficient for tromnition from I to i (upper to lower)

Table 3.2. Sample collision parameters

| Temperature (K) | $\mathrm{HI}-\mathrm{HI}^{\text {a }}$ | $\underset{\left(\mathrm{cm}^{3} \mathrm{~s}^{-1}\right)}{\gamma_{\mathrm{H}}}$ |
| :---: | :---: | :---: |
|  |  | $5.1 \times 10^{-10}$ |
| 30 |  | $7.4 \times 10^{-10}$ |
| 100 |  | $10.2 \times 10^{-10}$ |
| 1000 |  | $13.6 \times 10^{-10}$ |
|  | HI - HII de-excilation ${ }^{\text {b }}$ | $\begin{aligned} & \gamma_{21 \text { can line }} \\ & \left(\mathrm{cm}^{3} \mathrm{~s}^{-1}\right) \end{aligned}$ |
| 30 |  |  |
| 100 |  | $9.5 \times 10^{-11}$ |
| 300 |  | $16 \times 10^{-1}$ |
| 1000 |  |  |
|  | electron - proton with recomb. ${ }^{\text {c }}$ | $\begin{gathered} \alpha_{r} \\ \left(\mathrm{~cm}^{3} s^{-1}\right) \end{gathered}$ |
| 5000 |  | $4.54 \times 10^{-13}$ |
| 10000 |  | $2.59 \times 10^{-13}$ |
| 20000 |  | $2.52 \times 10^{-13}$ |
|  | electron - proton without recomb. ${ }^{\text {d }}$ | \%eff $\left(\mathrm{cm}^{2}\right)$ |
| $10^{4}$ |  | $1.4 \times 10^{-19}$ |
| $10^{5}$ |  | $1.4 \times 10^{-17}$ |
| $10^{6}$ |  | $1.4 \times 10^{-14}$ |
|  | electron - HI de-excitation ${ }^{\prime \prime}$ | $\begin{aligned} & \gamma_{\text {Lya }(2)}\left(\mathrm{cm}^{3} \mathrm{~s}^{-1}\right) \end{aligned}$ |
| 5000 |  | $6.0 \times 10^{-9}$ |
| 10000 |  | $6.8 \times 10^{-9}$ |
| 20000 |  | $8.4 \times 10^{-9}$ |



HI $\quad x=21$ cen spectral line emission $n=1$ prives. quatiteren \#
radiation due to a $\frac{s p i n}{4}$ - flip transition
Does not hoppren often: How often?

$$
\begin{array}{ll}
i & e^{-} \\
\stackrel{\downarrow}{\downarrow}
\end{array}
$$

- spontanears de-reatatorn le yrs

$$
\begin{aligned}
& T=100 k \\
& \Rightarrow \gamma_{21}=9,8 \cdot 10^{-11} \mathrm{~cm}^{3} / \mathrm{s} \\
& \text { higher } E \\
& \text { lower } E \\
& \text { Ctasce } 3.2 \\
& \bar{t}=\frac{1}{n \gamma}=350 \text { yor } \longleftarrow \text { mean-time } \leftarrow / w \text { collezions } \\
& \tau \text { denasty }\left(n=1 / \mathrm{un}^{3}\right)
\end{aligned}
$$



